
REAL TIME SYSTEMS

Unit:1 Introduction to RTS

By

HAMSASHREE M K

Asst. Professor

Dept of ECE

BGSIT1

LECTURE OUTLINE:

 Historical background.

 Elements of a real-time system.

 What is a real-time system?

 Classification of real-time systems.

 Characteristics of a real-time system.

2

HISTORICAL BACKGROUND:

 Brown and Campbell (1950) : (in paper only)

 Using a computer operating in real-time as part of a control

system . (analog computing elements)

 The 1st digital computers developed specifically for R.T.S. were

for airborne operating. in 1954 a digital computer was

successfully used to provide an automatic flight and weapons

control system .

 The 1st industrial installation of a computer system was in

September, 1958 for plant monitoring at power station in sterling

, Louisiana .

 The 1st industrial computer control installation was mad by the

Texaco company who installed an RW-300 system at their port

Arthur refinery in Texas on 15/03/1959

 The 1st DDC computer system was the Ferranti Argus 200

system installed in November, 1962 at the ICI, Lancashire, UK. It

has 120 control loops and 256 measurements .

 The advent of the Microprocessor in 1974 made economically

possible the use of DDC and distributed computer control

systems.

3

4

5

6

ELEMENTS OF A COMPUTER CONTROL

SYSTEM:

 A centrifugal fan blows air over a heating element and into a tube.

 A thermostat is used to detect the temp.

 The position of the air-inlet cover to the fan is adjusted by a

reversible DC motor (constant speed).

 A potentiometer is attached to the air-inlet cover .

 Two 8-switches are used to detect when the cover is fully open or

fully closed .

 The operator is provided with a panel from which the control system

can be switched from automatic to manual control panel. Lights

indicate: Fan ON, Heater ON, Cover fully-open, Cover fully-closed,

Auto/Manual status.

 The information is available from the plant instrument in the

following two forms:

– Analog signals : Air Temp., Fan-inlet cover position .

– Digital signals : Fan-inlet cover position (Fully-open, Fully-closed)

– Status signals : Auto/Manual , Fan motor ON, Heater ON
7

8

9

OVERALL STRUCTURE OF RT SYSTEMS:

 Hardware (CPU, I/O devices, memory… etc)

– Single CPU or more.

– Clock selecion.

 A real time Operating System: function as standard OS,
with predictable behavior and well-defined functionality.

 A collection of RT tasks/processes (share resources,
communicate/synchronize with each other and the
environment)

10

WHAT IS A REAL-TIME SYSTEM?

 According to Oxford dictionary :

“Any system in which the O/P is produced is

significant.”

 Alternative definitions :

 A RTS reads I/Ps from the plant and sends control signals

to the plant at times determined by plant operational C/Cs.

 RTSs are those which must produce correct responses

within a definite time limit.

 A RTS is any information processing system that has to

respond to externally generated signal within a finite and

specified period.

 A RTS is a computer system where the correct functioning

of the system depends on the results produced and the time

at which they are produced.
11

WHAT IS A REAL-TIME SYSTEM? (CONT)

 A system, where correct timing behavior is
strongly related to functionality,performance and
reliability

 A computer system is a real-time one if it
explicitly manages resources in order to meet
timing constraints.

 A real-time system is a system where the
correctness depends not only on the logical result
of computation but also on the time at which the
results are produced".

 A system that is synchronous with the
interacting environment.

12

IN REAL-TIME SYSTEMS:

 Timing of actions is essential: Compare with table

tennis, air bag, engine control and music.

 Age of data is essential: Compare with a weather

report: sample data, compute, actuate - when does the

data cease to be valid?

 Notes:

- Different consequences depending on context!

- Different types of timing requirements

- Delays need to be controlled.

 Requirements on a real-time system:

1. Sufficiently fast (processing, communication, ...)

2. Predictable resource sharing and timing!
13

CLASSIFICATION OF RTSS:

14

CLASSIFICATION OF RTSS: (CONT)

15

CLASSIFICATION OF RTSS: (CONT.)

16

CLOCK-BASED & EVENT-BASED

SYSTEMS:

 Synchronization between the external processes

and internal actions (tasks) carried out by the

computer may be defined in terms of the passage

of time, or the actual time of day, in which case

the system is said to be “Clock-based system”

or it may be defined in terms of events, and the

system is said to be “Event-based system”.

 If the relationship between the actions in the

computer and the system is much more loosely

defined, then the system is said to be

“interactive system”.

17

 Real-Time systems can be classified as:

1. Clock-Based Tasks: (Cyclic and Periodic):

– The completion of the operations within

the specified time is dependent on the number of

operations to be performed and the speed of the

computer .

– Synchronization is usually obtained by

adding a clock to the computer system , and

using a signal from this clock to interrupt the

operation of the computer at predetermined fixed

time interval .

18

2. Event-Based Tasks: (A periodic):

Action are to be performed not at particular

times or time intervals but in response to some

event . The system must respond within a given

max. time

to a particular event .

– Events occur at non-deterministic intervals and

event-based tasks are referred to as “aperiodic

task”.

19

3. Interactive Systems:

 They represent the largest class of RTSs such as

automatic bank tellers, reservation systems for

hotels , airlines and car rental……etc.

 The real-time requirement is usually expressed

in terms such as “the average response time must

not exceed ……”

 Example: an automatic bank teller system might

require an average response time not exceeding

20 sec.

20

CLASSIFICATION OF PROGRAMS:

 A real-time program is defined as a program for
which the correctness of operation depends on the
logical results of the computation and the time at
which the results are produced.

 In general there are three types of programming:

1. Sequential: Actions are ordered as a time
sequence , the program behavior depends only on the
effects of the individual actions and their order .

2. Multi-tasking: Actions are not necessarily disjoint
in time , it may be necessary for several actions to be
performed in parallel .

3. Real-Time: Actions are not necessarily disjoint in
time , and the sequence of some of program actions is
not determined by the designer but the environment

21

 (by events occurring in the outside world which

occur in real-time and without reference to the

internal operation of the computer)

 A real-time program can be divided into a

number of tasks but communication between the

tasks can not necessarily wait for a

synchronization signal. The environment task

can not be delayed.

 In RT programs, the actual time taken by an

action is an essential factor in the process of

verification .

22

 RTSs have to carry out both periodic activities .

 RTSs have to satisfy time constraints that can

be either:

 A hard constraint , or

 A soft (average value) constraint.

 RT software is more difficult to specify, design

and construct than non real-time software

NOTE:

23

CHARACTERISTICS OF A RTS:

 Large and complex: vary from a few hundred lines of assembler or C
to 20 million lines of Ada estimated for the Space Station Freedom.

 Concurrent control of separate system components: devices
operate in parallel in the real-world; better to model this Parallelism by
concurrent entities in the program.

 to interact with special purpose hardware: need to be able to
program devices in a reliable and abstract way.

 Mixture of Hardware/Software: some modules implemented in
hardware, even whole systems, SoC.

 Extreme reliability and safety: real-time systems typically control
the environment in which they operate; failure to control can result in
loss of life, damage to environment or economic loss.

 Guaranteed response times: we need to be able to predict with
confidence the worst case response times for systems; efficiency is
important but predictability is essential. 24

25

REAL TIME SYSTEMS

Unit:5 Real-Time Operating Systems

By

Hamsashree M K

Asst. Professor

Dept of ECE

BGSIT
1

LECTURE OUTLINE:

 Explain components of a simple operating system.

 Describe types of operating systems.

 Why we use a RTOS?

 What an RTOS does? How it works?

 Benefits and drawbacks of an RTOS.

 Describe and explain by examples the basic task

synchronization mechanisms.

2

GENERAL PURPOSE OPERATING SYSTEM:

 Access to the hardware of the system and to the I/O devices is

through the operating system(OS).

 In many real-time and multiprogramming systems restriction of

access is enforced by hardware and software traps.

 A general purpose operating system will provide some facilities

that are not required in a particular application.

 Recently, operating systems which provide only a minimum

kernel have become popular, additional features can be added.

3

GENERAL STRUCTURE OF A SIMPLE OS:

 The command processor provides a means by which the user can

communicate with the OS.

 The actual processing of the user commands is done by BDOS,

which also handles the I/O and the file operations on the disks.

 The BDOS makes the actual management of the file and I/O

operations transparent to the user.

 Application programs will normally communicate with the

hardware of the system through system calls which are processed by

the BDOS.

 The BIOS contains the various device drivers which manipulate the

physical devices and OS.

 Devices are treated as logical or physical units. Logical devices are

software constructs used to simplify the user interface. User

programs perform I/O to logical devices and the BDOS connects the

logical devices to the physical device.

4

5

GENERAL STRUCTURE OF A SIMPLE OS:

TYPES OF OPERATING SYSTEMS:

 There are different types of OSs:

 – Single-user and Multi-user operating systems.

 – Single-task and Multi-tasking operating systems.

 – Real-time operating systems.

6

MULTI-USER OPERATING SYSTEMS:

 The OS ensures that each

user can run a single

program as if the had the

whole computer system.

 At any given instance, it is

not possible to predict which

user will have the use of the

CPU.

 The OS ensures that one user

program cannot interfere

with the operation of another

user program. Each user

program runs in its own

protected environment. 7

MULTI-TASKING OPERATING SYSTEMS:

 In a multi-tasking operating
system, it is assumed that
there is a single user and that
the various tasks co-operate to
serve the requirements of the
user.

 Co-operation requires that all
tasks communicate with each
other and share common data.

 Task communication and data
sharing will be regulated so
that the OS is able to prevent
inadvertent communication or
data access, and hence protect
data which is private to a task.

8

REAL-TIME OPERATING SYSTEM (RTOS):

 A fundamental requirement of an operating system is to allocate
the resources of the computer to the various activities which have
to be performed.

 In a RTOS this allocation procedure is complicated by the fact
that some of the activities are time critical and hence have a
higher priority than others. Therefore, there must be some means
of allocating priorities to tasks and of scheduling allocation of
CPU time to the tasks according to some priority scheme.

 A task may use another task, thus tasks may need to
communicate with each other. The OS must have some means of
enabling tasks either to share memory for the exchange of data or
to provide a mechanism by which tasks can send messages to
each other.

 Tasks may need to be invoked by external events and hence the
OS must support the use on interrupts.

 Tasks may need to share data and they may require access to
various hardware and software components, hence there has to be
a mechanism for preventing two tasks from attempting to use the
same resource at the same time. 9

REAL-TIME OPERATING SYSTEM (RTOS):

 A real-time multi-tasking operating

system has to support the resource

sharing and the timing requirements

of the tasks an the functions can be

divided as follows:

 – Task Management: the

allocation of memory and

processor time (scheduling) to

tasks.

 – Memory Management: control

of memory allocation.

 – Intertask Communication &

Synchronization: provision of

support mechanisms to provide

safe communication between

tasks and to enable tasks to

synchronies their activities.

10

SCHEDULING STRATEGIES:

 There are two basic strategies for the scheduling

of time allocation on a single CPU, these are:

 1. Cyclic Strategy:

 The task uses the CPU for as long as it wishes.

 It is a very simple strategy which is highly efficient

in that it minimizes the time lost in switching

between tasks.

 It is an efficient strategy for small embedded systems

for which the execution times for each task run are

carefully calculated and for which the software is

carefully divided into appropriate task segments.

 This approach is too restrictive since it requires that

the task units have similar execution times. It is

difficult to deal with random events using this

approach.

11

SCHEDULING STRATEGIES:

 2. Pre-emptive Strategies:

 There are many pre-emptive strategies, all involve

the possibility that a task will be interrupted before

it has completed a particular invocation.

 The simplest form of pre-emptive scheduling is to use

a time slicing approach. Using this strategy each task

is allocated a fixed amount of CPU time (number of

clock ticks), and at the end of this time it is stopped

and the next task in the list is run. If a task

completes before the end of its time slice, the next

task in the list is run immediately.

12

PRIORITY SCHEDULING MECHANISM:

 Tasks are allocated a priority level and at the end of

a predetermined time slice, the task with highest

priority of those ready to run is chosen and is given

control of the CPU.

 Task priorities may be fixed (static priority system)

or may be changed during system execution (dynamic

priority system).

 Dynamic priority schemes can increase the flexibility

of the system.

 Changing priorities is risky as it makes it much

harder to predict and test the behavior of the system.

 The task management system has to deal with the

handling of interrupts. These may be hardware

interrupts caused by external events, or software

interrupts generated by a running task.

13

 In a real-time system the designer has to assign priorities

to the tasks in the system.

 The priority will depend on how quickly a task will have to

respond to a particular event.

 Most RTOSs provide facilities such that task can be divided

into three board levels:

 1. Interrupt Level: at this level are the service

routines for the tasks and devices which require very

fast response (measured in msec.) Example: real-time

clock task.

 2. Clock Level: at this level are the tasks which

require accurate timing and repetitive processing,

such as the sampling and control tasks.

 3. Base Level: tasks at this level are of low priority

and either have no deadlines to meet or are allowed a

wide margin of error in their timing. Tasks at this

level may be allocated priorities or may all run at a

single priority level.

14

Priority Structures:

15

Priority Structures:

16

CLOCK LEVEL:

 One interrupt level task will be the real-time clock.

 Typical values 1-200 msec.

 Each clock interrupt is known as a tick and
represents the smallest time interval in the system.

 The function of the clock interrupt handling routine
is to update the time of day clock in the system and to
transfer control to dispatcher.

 The scheduler selects which task is to run at a
particular clock rate.

 Clock level tasks divided into two categories;
 – Cyclic: these are tasks which require accurate

synchronization with outside world.

 – Delay: these tasks simply wish to have a fixed delay
between successive repetitions or to delay their activities
for a given period of time.

17

CLOCK LEVEL:

 Cyclic tasks are ordered in a priority which reflects the

accuracy of timing required for the task, those which

require high accuracy being given the highest priority

 Tasks of lower priority within clock level will have some

jitter since they will have to await completion of the higher-

level tasks.

 Example:

 Three tasks A, B, and C are required to run at 20 msec,

40 msec and 80 msec intervals. If the clock interrupt

rate is set at 20 msec. if the task priority order is set as

A,B,and C with A as the highest priority.

 The following slid shows task activation diagram for

this example in two cases;

 Case (a): Task priorities are: A, B, then C.

 Case (b): Task priorities are: C, A, then B. 18

19

EXAMPLE:

 Now assume that task C takes 25 msec to complete, task
A takes 1 msec and task B takes 6 msec. if task C is
allowed to run until completion then the activity diagram
is given bellow.

 Task A will be delayed by 11 msec at every fourth
invocation..

20

TASK STATES:

 Tasks are in one of four states:

 1. Running

 2. Ready to Run (but not running)

 3. Waiting (for something other

than the CPU.)

 4. Inactive

 Only one task can be Running at a

time (unless we are using a “multi-

core” CPU).

 A task which is waiting for the CPU is

Ready. When a task has requested I/O

or put itself to sleep, it is Waiting.

 An Inactive task is waiting to be

allowed into the schedule. It is like

Microsoft Word when you are NOT

running it.

21

TASK DESCRIPTOR:

 Information about the status of each task is held

in a block of memory by the RTOS. This block is

called Task Descriptor (TD), or Task Control

Block (TCB) or Task Data Control (TDC).

 The information is held in the TD will vary from

system to system, but will typically consist of the

following:

 – Task Identification.

 – Task Priority.

 – Current state of task.

 – Area to store volatile environment (or a pointer to

an area for storing the volatile environment).

 – Pointer to next task in list.

22

EXAMPLE:

 The next slide shows list structure for holding

task state information:

 There is one active task (task ID=10).

 There are three tasks ready to run (ID=20, ID=9 and

ID=6). The entry held in the executive for the ready

queue head points to task 20, which in tern points to

task 9 and so on.

 The advantage of the list structure is that the actual

TD can be located anywhere in the memory and

hence the OS is not restricted to a fixed number of

tasks as the case in older OSs which used fixed

length tables to hold task state information.

23

24

RESOURCE CONTROL:

 One of the most difficult areas of programming is the transfer of

information to and from external devices. The availability of a well-

designed and implemented I/O subsystem (IOSS) in an OS is essential

for efficient programming. This enables programmer to perform input

output by means of system calls either from a HLL or from the

assembler. The IOSS handles all the details of the devices.

 A typical IOSS will be divided into two levels.

 The I/O manager accepts the system calls from the user tasks

and transfers the information contained in the calls to the device

control block (DCB) for the particular device.

 The information supplied in the call by the user task will be;

 – the location of a buffer area in which the data to be transferred is

stored (o/p) or is to be stored (i/p),

 – the amount of data to be transferred,

 – type of data,

 – direction of transfer, and

 – the device to be used.

25

26

DETAILED ARRANGEMENT OF IOSS:

 The actual transfer of the data between the user task and the

device will be carried out by the device driver and this segment of

code will make use of other information stored in the DCB.

 A separate device driver may be provided for each device.

 A single driver may be shared between several devices, however,

each device will require its own DCB.

 The OS will normally be supplied with DCBs for the more common

devices.

27

MUTUAL EXCLUSION:

 Consider the transfer of information from i/p task to a control

task. The i/p task gets the values for the controller i/p

parameters (gain, Ti and Td). From these it computes the

controller parameters (KP, KI, and KD) and these are

transferred to the CONTROL task.

 A simple method is to hold the parameters values in an area of

memory (common data area) and hence is accessible to both

tasks.

28

29

REAL TIME SYSTEMS

Unit:2 Concepts of Real-Time
Computer Control Systems

By

Hamsashree M K

Asst. Professor

Dept of ECE

BGSIT

1

LECTURE OUTLINE:

 Concepts of computer control systems.

 Analog and digital control.

 Data acquisition system.

 Sequence control.

 Direct digital control.

 Adaptive control.

 Supervisory control.

 Centralized and distributed computer control.

 Human computer interface..

2

ACTIVITIES OF COMPUTER CONTROL

The activities being carried out by a computer , in a

RTS, will include the following:

 - Data acquisition .

 - Sequence control .

 - Direct digital control (DDC).

 - Supervisory control (SC).

 - Data analysis .

 - Data storage .

 - Human – computer interface (HCI).

3

OBJECTIVES OF COMPUTER CONTROL

The objectives of using a computer in a RTS will

include the following :

 - Efficiency of operation

 - Ease of operation .

 - Safety.

 - Improved products

 - Reduction in waste .

 - Reduced environmental impact .

 - Reduction in direct labor .

4

SEQUENCE CONTROL:

5

 Sequence control systems are widely used in the

food processing and chemical industries.

 The procedure for this simple reactor are:

 1. Open valve A.

 2. Check the level of chemical 1.

 3. Start the stirrer to mix the chemical reactor.

 4. Repeat steps 1 and 2 with valve B.

 5. Switch ON the PID controller.

 6. Monitor the reaction temp, when it reaches the set-

point, start a timer.

 7. When the timer indicates that the reaction is

complete, switch OFF the controller and open valve C to

cool down the reactor contents. Switch OFF the stirrer.

 8. Monitor the temp, when the contents have cooled,

open valve E to remove the product from the reactor.
6

DIRECT DIGITAL CONTROL (DDC):

 The computer is in the feedback loop of the system. It is a

critical component in terms of the reliability of the system.

 In the event of a failure of the computer, the system

remains in a safe condition.

 The advantages for DDC over analog control are:

 1. Cost. 2. Performance. 3. Safety.

7

DDC TECHNIQUES

 Feedback control

 Inferential control

 Feed-forward control

 Adaptive control
8

ADAPTIVE CONTROL:

Adaptive control can take several forms. Three of the most

common are:

 1. Preprogrammed adaptive control.

 2. Self-tuning control.

 3. Model-reference adaptive control.

9

SUPERVISORY CONTROL:

Many of early computer control schemes used the computer in

a supervisory role and not for DDC. The main reason for

this were;

 1. Computers were not always very reliable and caution

dictated that the plant should still be able to run in the

event of a computer failure.

 2. computers were very expensive and it was not

economically viable to replace the analog control

equipment in current use.

10

CENTRALIZED COMPUTER SYSTEM:

 Most of the 1960s computer control

systems implied the use of one central

computer for the control of the whole

plant. The reason for this was largely

financial (computers were expensive).

 By 1970 the cost of computer hardware

had reduced to such an extent that it

became feasible to consider the use of dual

computer systems.

 Automatic failure and change-over

equipment when used becomes a critical

component.

 The continued reduction of the cost of

hardware and the development of the

microprocessor has made multi-computer

systems feasible. These fall into two types:

 1. Hierarchical systems : tasks are

divided according to function, e.g.: one

computer performing DDC.

 2. Distributed systems : many

computers perform essentially similar

tasks in parallel.

11

MULTI-COMPUTER SYSTEMS:

 Several computers can be configured for real-

time computer control applications.

 These include dual computer systems to increase

reliability, and distributed and hierarchical

configurations.

 1. Hierarchical Systems: tasks are divided

according to function, for example; one computer

performing DDC, other performing sequence control,

other performing supervisory control..

 2. Distributed Systems: many computers

perform essentially similar tasks in parallel.

12

HIERARCHICAL DECISION MAKING:

13

HIERARCHICAL SYSTEM: AN EXAMPLE

 A typical example of a

hierarchical system is the

batch system given below.

 It has three levels; Manager,

Supervisor, and unit Control.

 It is assumed that single

computers are used for

manager and supervisor

functions, and that for each

processing unit a single unit

control computer is used.
14

15

Hierarchical System: An Example

DISTRIBUTED SYSTEMS:

 In real-time systems ,

consider:

 Each unit is carrying out

essentially similar tasks to

all the other units.

 In the event of failure or

overloading of a particular

unit all or some of the

work can be transferred to

other units.

16

ADVANTAGES:

 1. Sharing of tasks between μCs.

 2. More flexible than using one μC.

 3. Failure of a unit will cause less disruption.

 4. It is easier to make changes .

 5. Linking by serial highway means that the

computer units can be widely dispersed .

17

18

REAL TIME SYSTEMS

Unit:3 Computer Hardware
Requirements for Real-Time Applications

By

Hamsashree M K

Asst. Professor

Dept of ECE

BGSIT

1

LECTURE OUTLINE:

 Features of microcomputers and microcontrollers.

 Standard interfacing techniques.

 Digital input/output interface.

 Analog input/output interface.

 Pulse input/output interface.

 Data acquisition system design.

 Management of data acquisition system.

2

MICROCOMPUTERS & MICROCONTROLLERS:

 General purpose microprocessors include the Intel xx86 series,

Motorola 680xx series, National 32xxx series, and the Zilog

Z8000 series.

 The ALU together with control unit and the general purpose

registers make up the CPU.

 The CPU, memory and input/output units represent a

microcomputer. The CPU in a single chip microcomputer or a

microcomputer board is called microprocessor.

3

COMPUTER ARCHITECTURE:

 1. The Von Neumann System.

 2. The Harvard System.

4

GENERAL-PURPOSE COMPUTER :

5

1. CPU : Features :

– Word length. - Instruction set .

– Addressing methods. - No. of registers.

– Information transfer rates. - Interrupt structure.

2. Storage:

– RAM, ROM, EPROM and auxiliary storage unit .

– DMA for fast I/O information transfer.

3. Input and Output:

– Process I/O

– Operator I/O

– Computer I/O

4. Bus structure:

– Mechanical (physical) structure

– Electrical

– Functional

SPECIALIZED COMPUTERS:

 Specialized processors have been developed for two main

purposes:

 – Safety-critical applications.

 – Increased computation speed .

 For safety-critical applications , use RISC computers.

 The advantage of simplifying the instruction set is:

 1. The possibility of formal verification (using math. proofs) that

the logic of the processor is correct.

 2. It is easier to write assemblers and compilers for simple

instruction set.

 Many different forms of parallel computer architecture

have been used SIMD, MISD, and MIMD .

 Digital signal processors .

6

SINGLE CHIP MICROCONTROLLERS:

 Small amount of RAM and

EPROM , it can be extended.

 • Instruction set .

 • DAC and ADC

 • Interrupt structure

 • I/O lines .

 • Timers.

7

MICROCONTROLLER SELECTION:

8

THE PIC16F84 MICROCONTROLLER:

 The 16F84A architecture is representative of all 16 Series

microcontrollers, with Harvard structure, pipelining and a RISC

instruction set.

 The PIC 16F84A has a limited set of peripherals, chosen for small and

low-cost applications. It is thus a smaller member of the family, with

features that are a subset of any of the larger ones.

 A particular type of memory location is the Special Function Register,

which acts as the link between the CPU and the peripherals.

 Reset mechanisms ensure that the CPU starts running when the

appropriate operating conditions have been met, and can be used to

restart the CPU in case of program failure.

 The parallel port allows ready exchange of digital data between the

outside world and the controller CPU.

 It is important to understand the electrical characteristics of the parallel

port and how they interact with external elements.

 A microcontroller needs a clock signal in order to operate. The

characteristics of the clock oscillator determine speed of operation and

timing stability, and strongly influence power consumption.

 Interrupts and counter/timers are important hardware features of almost

all microcontrollers. They both carry a number of important hardware and

software concepts, which must be understood.

9

COMMUNICATIONS:

 Level (1): parallel analog/digital transmission (High speed, frequent transfer)

 Level(2): Asynchronous direct or synchronous network (Medium speed)

 Level (3): Synchronous (High speed , intermittent)

 At high levels, it is more usual to use serial communication methods due to

the distances between computers (few hundred meters).

 At plant level , parallel analog and digital signal transmission techniques are

involved, since the distances are small.

 Serial communication techniques can be characterized in several ways:

 1. Mode: Synchronous and Asynchronous .

 2. Quantity: Character by character and block .

 3. Distance: Local and remote (Wide area).

 4. Code: ASCII and others..

10

PROCESS RELATED INTERFACE:

 Instruments and actuators

connected to the plant can take a

wide variety of forms; they may be

used for measuring a variable, they

could be used to control an actuator.

 There is a need to convert a digital

quantity to a physical quantity, or

an analog signal generated from a

sensor into a digital quantity.

 Most devices can be allocated to one

of the following categories;

 1. Digital quantities.

 2. Analog quantities.

 3. Pulses and pulse rates.

 4. Telemetry. DDC, other performing

sequence control, other performing

supervisory control..

11

SENSORS USED IN RT SYSTEMS:

12

 A sensor is a device that outputs a signal which is related to the

measurement of a physical quantity such as temperature, speed,

force, pressure, displacement, acceleration, torque, flow, light or

sound.

 Sensors are used in RT systems in the feedback loops, and they

provide information about the actual output of a plant. For example,

a speed sensor gives a signal proportional to the speed of a motor.

 Sensors can be classified as analog or digital;

 – Analog sensors are more widely available, and their outputs

are analog voltages. For example, the output of an analog

temperature sensor may be a voltage proportional to the

measured temperature. Analog sensors can only be connected to a

computer by using an A/D converter.

 – Digital sensors are not very common and they have logic level

outputs which can directly be connected to a computer input port.

 The choice of a sensor for a particular application depends on many

factors such as the cost, reliability, required accuracy, resolution,

range and linearity of the sensor.

THE CHOICE OF A SENSOR:

 Range: The range of a sensor specifies the upper and lower limits of the

measured variable for which a measurement can be made. For example, if the

range of a temperature sensor is specified as 10–60 LC then the sensor should

only be used to measure temperatures within that range.

 Resolution: The resolution of a sensor is specified as the largest change in

measured value that will not result in a change in the sensor’s output, i.e. the

measured value can change by the amount quoted by the resolution before this

change can be detected by the sensor. In general, the smaller this amount the

better the sensor is, and sensors with a wide range have less resolution. For

example, a temperature sensor with a resolution of 0.001K is better than a sensor

with a resolution of 0.1 K.

 Repeatability: The repeatability of a sensor is the variation of output values

that can be expected when the sensor measures the same physical quantity

several times. For example, if the voltage across a resistor is measured at the

same time several times we may get slightly different results.

 Linearity: An ideal sensor is expected to have a linear transfer function, i.e. the

sensor output is expected to be exactly proportional to the measured value.

However, in practice all sensors exhibit some amount of nonlinearity depending

upon the manufacturing tolerances and the measurement conditions.

 Dynamic response: The dynamic response of a sensor specifies the limits of the

sensor characteristics when the sensor is subject to a sinusoidal frequency

change. For example, the dynamic response of a microphone may be expressed in

terms of the 3-dB bandwidth of its frequency response.

13

ANALOG INPUT/OUTPUT INTERFACING:

14

PULSE INPUT/OUTPUT INTERFACING:

 - Reading sequence of pulses generated from a

sensor.

 - Reading the width of a pulse width modulated

signal.

 - Generating number of pulses with fixed

frequency.

 - Generating a controllable pulse width

modulated signal.

15

EXAMPLE:

 Simple Robot System: Hardware interfacing with an

8-bit microcontroller.

16

17

EXAMPLE:

 Four-digit display unit design.

18

EXAMPLE:

 LCD interfacing with an 8-bit microcontroller.

19

DATA ACQUISITION SYSTEM DESIGN:

20

DAS: SOFTWARE DESIGN:

 - Using flowchart.

 - Writing an assembly

program.

 - Different sampling rates.

 - Selecting the suitable

sampling frequency.

 - Task execution time.

 - Dealing with interrupts.

 - Memory management.

21

22

